
Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 1 of 64

Testing

Overview

Throughout development I tested features to make sure they worked on their own before implementing them into my project. In
this section I will test each function of my finished system to see if I observe the results I expect.

Where data can be entered, I will test using valid, invalid and boundary data. Where data that is input will be used in an SQL query to
my database, I will also make sure my project does not break when SQL symbols are entered to check that my parametrised
statements are protecting my project against SQL injections.

Details of individual tests

The evidence for each test is included in these videos:
Video 1: https://youtu.be/SKqqxd1AO50
Video 2: https://youtu.be/MvopYK3y8Sk
Video 3: https://youtu.be/s_4g6u5X7KU

Test group
and Number

Purpose Description Test Data Expected Result Video
Timings

Actual
Result

1

Validation /
Navigation

Valid test I will enter two different
valid stations into the
‘From’ and ‘To’ text boxes.
Then I will press the ‘Find
Route’ button.

Start station =
'Vauxhall'
To station = 'London
Bridge’

The ‘Journey Results’
panel is displayed when
the ‘Find Route’ button
is pressed.

Video 1
01:05 to
01:34

As
predicted

2

Validation

Invalid
test

I will enter nothing into
both the ‘From’ and ‘To’
text boxes. Then I will press
the ‘Find Route’ button.

Start station = null
To station = null

An error message will
appear on the GUI

Video 1
00:30 to
00:38

As
predicted

3

Validation

Invalid
test

I will enter two invalid
station names into both the
‘From’ and ‘To’ text boxes.

Start station = ‘test
station’

An error message will
appear on the GUI

Video 1
00:39 to
00:52

As
predicted

https://youtu.be/SKqqxd1AO50
https://youtu.be/MvopYK3y8Sk
https://youtu.be/s_4g6u5X7KU

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 2 of 64

Then I will press the ‘Find
Route’ button.

To station = 'made
up station’

4

Validation

Invalid
test

I will enter the same valid
station into both the ‘From’
and ‘To’ text boxes. Then I
will press the ‘Find Route’
button.

Start station =
‘London Bridge’
To station = 'London
Bridge’

An error message will
appear on the GUI

Video 1
00:52 to
01:04

As
predicted

5

Validation /
Navigation /
Algorithm
output

Invalid
test

I will find a route between
two stations. I will then
close a line that is
mandatory for this journey.
I will then press the ‘Find
Route’ button again.

Start station =
'Vauxhall'
To station = 'London
Bridge’

Victoria Line
status = closed
Other lines are open

When the line is closed
an error message will
appear on the GUI and
the panel being shown
will not change.

Video 1
01:05 to
02:22

As
predicted

6

Validation /
Navigation /
Algorithm
output

Valid test I will find a route between
two stations. I will then
close a line that is used on
this journey but is not
mandatory to the journey. I
will then press the ‘Find
Route’ button again.

Start station =
'Vauxhall'
To station = 'London
Bridge’

Northern Line status
= closed
Other lines are open

A route is found with
the path taken being
redirected onto other
train lines.

Video 1
01:05 to
03:05

As
predicted

7

Algorithm
output

Valid test Start entering a station
name. Test to see if there is
autocomplete for the
station name being entered

‘lon’ entered into
the station name
text box

When typing in a
station name the user
should have the option
to use autocomplete to
automatically fill out a
station name suggested
by the system.

Video 1
00:52 to
01:00

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 3 of 64

In this case when typing
in ‘lon’ the station
name ‘London Bridge’
should be suggested.

8

Navigation

Valid test I will press the ‘Admin
Access’ button

Pressing the ‘Admin
Access’ button

The ‘Admin Login’ panel
is displayed when the
‘Admin Access’ button
is pressed.

Video 1
01:49 to
01:52

As
predicted

9

Algorithm
output

Valid test The ‘Minimum Changes’
checkbox is not selected,
and a route is found
between two stations
where having more
changes would make the
journey quicker than have
fewer changes.

The ‘Minimum
Changes’ checkbox
is not selected.

Start station =
‘Victoria’
To station =
‘Liverpool Street’

The route is found with

more changes than the

result in test 10 but the

journey time is less.

Video 1
03:35 to
04:49

As
predicted

10

Algorithm
output

Valid test

The ‘Minimum Changes’
checkbox is selected, and a
route is found between the
same two stations in test 9

The ‘Minimum
Changes’ checkbox
is selected.

Start station =
‘Victoria’
To station =
‘Liverpool Street’

The route is found with

less changes than the

result in test 9 but the

journey time is more.

Video 1
03:35 to
04:49

As
predicted

11

Algorithm
output

Valid test The ‘Live Train Changes’
checkbox is not selected
and then a route is found.

The ‘Live Train
Changes’ checkbox
is not selected

Start station =
'Dollis Hill’

In the journey results
there is no platform
information or arrival
times.

Video 1

04:55 to

05:43

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 4 of 64

To station =
'Holborn’

12

Algorithm
output

Valid test

The ‘Live Train Changes’
checkbox is selected and
then a route is found.

The ‘Live Train
Changes’ checkbox
is selected

Start station =
'Dollis Hill’
To station =
'Holborn’

The API is called and in
the journey results
there is platform
information and arrival
times for each line
change returned. If live
information for a
station is not available
an error will be shown
instead.

Video 1

05:56 to

06:03

As
predicted

13

Algorithm
output

Valid test The ‘Live Train Changes’
checkbox is selected and
then a route is found. Then
arrival times and platform
names are compared to
that of TfL’s website.

The ‘Live Train
Changes’ checkbox
is selected

Start station =
'Dollis Hill’
To station =
'Holborn’

The arrival times and
platform names output
by my system are the
same as those
displayed by TfL on
their website. Arrival
times may be off by ± 1
min due the exact time
the API was called, and
the accuracy of the API
compared to the
website.

Video 1

05:56 to

06:48

As
predicted

14

Algorithm
output

Valid test

The ‘Live Train Changes’
checkbox is selected and
then a route is found while
not connected to the
internet. This will mean the
API cannot be accessed.

The ‘Live Train
Changes’ checkbox
is selected

All route details will be
returned apart from
platform and arrival
time information. An
error message will

Video 1

07:10 to

07:30

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 5 of 64

appear on the GUI
instead.

15

Algorithm
output

Valid test A route is found between

two stations that are

reasonably close together.

(about 10 stops)

Start station =
‘Poplar’
To station =
'Regent’s Park’

A route between the
stations will be
calculated and list of
station names will
appear in the console
showing the exact
route taken by my path
finding algorithm. This
route should appear to
be the shortest path.

Video 1

07:37 to

08:57

As
predicted

(where the
same
station is
printed out
twice it
shows a line
change)

16

Algorithm
output

Valid test A route is found between

two stations that are far

apart, across the whole

tube map

Start station =
'Epping’
To station =
‘Amersham’

A route between the
stations will be
calculated and list of
station names will
appear in the console
showing the exact
route taken by my path
finding algorithm. This
route should appear to
be the shortest path.

Video 1

09:02 to

10:02

As
predicted

(where the
same
station is
printed out
twice it
shows a line
change)

17

Algorithm
output

Valid test Test to see that the cost of

the journey is displayed and

that the cost is the correct

value from the database.

Start station =
'Epping’
To station =
‘Amersham’

The price is displaced
on the GUI and is the
correct value given the
range of zones travelled
through. This range of
zones is printed in the
console.

Video 1

10:08 to

10:45

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 6 of 64

18

Algorithm
output

Valid test Test to see if the system

returns the total estimated

travel time for the journey.

Start station =
'Epping’
To station =
‘Amersham’

The total time for the
journey is displayed.

Video 1

10:50 to

10:58

As
predicted

19

Algorithm
output

Valid test Test to see if the system

returns the estimated

travel time for each section

between train changes in

the journey.

Start station =
'Epping’
To station =
‘Amersham’

The estimated travel
time for each section
between train changes
is displayed.

Video 1

10:59 to

11:09

As
predicted

20

Algorithm
output

Valid test Test to see if the system
returns the names of
stations where each line
change occurs.

Start station =
'Epping’
To station =
‘Amersham’

The names of stations
where line changes
occur should be
displayed.

Video 1

11:09 to

11:19

As
predicted

21

Algorithm
output

Valid test

Test to check that the
system shows the names
and colours of the lines
being travelled on in the
journey.

Start station =
'Epping’
To station =
‘Amersham’

The system shows the
names and colours of
the lines being travelled
on in the journey.

Video 1
11:22 to
11:36

As
predicted

22

Algorithm
output

Valid test

Are the route details
returned in less than
200ms, when the ‘Live
Changes’ checkbox is not
selected and therefore the
API is not accessed for live
train times?

Start station =
‘Richmond’
To station =
‘Seven Sisters’

The ‘Live Train
Changes’ checkbox
is not selected

The route details are
returned in less than
200ms. This time is
printed in the console.

Video 1
11:40 to
12:02

As
predicted

The route
was found
in 16ms
which was
less time
than I
expected.

23

Valid test

Perform a path find. The
priority queue is printed
whenever a station is

Perform a path find

The queue is in order of
each station’s time to
be reached from the

Video 3
08:10 to
11:48

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 7 of 64

Algorithm
output

popped from the front of
the queue.

Start station =
‘Devons Road’
To station =
‘Loughton’

start station. When an
index is added, it is
inserted based on its
time to be reached.

 NB: the
same
station
name
sometimes
appears
multiple
times in the
queue due
to some
stations
being
represented
by multiple
nodes. This
is explained
below in the
‘Graph
problem’
section.

24

Algorithm
output

Valid test

Print out the adjacency list
when the program begins.
Print out the station names
for each corresponding list
of edge indexes.

Run the program For each station there
is a list of edge indexes.
These edges
correspond to
connected station
names which are
printed out. These
names should show
that connections
between stations are

Video 3
02:08 to
05:13

As
predicted

NB: some
stations are
represented
by multiple
nodes and
are
therefore
listed

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 8 of 64

correctly representing
the tube map.

multiple
times. This
is explained
below in the
‘Graph
problem’
section.

25

Algorithm
output

Valid
test

Test the binary search by
printing out the array of
station names still being
considered every time half
of the array is discarded.

Perform a path find

First find two valid
stations:
Start station =
‘Devons Road’
To station =
‘Loughton’

Then search for an
invalid station:
Start station =
‘Devons’

The binary search
should find the station
name that was entered
if it exists in the array.

Video 3
05:20 to
08:07

As
predicted

26

Navigation

Valid
test

Testing the ‘New Route’
button on the ‘Journey
Results’ panel

Pressing the ‘New
Route’ button

The ‘Tube Planner’
main menu panel is
displayed when the
‘New Route’ button is
pressed.

Video 1
12:02 to
12:08

As
predicted

27

Data storage
/ Validation /
Navigation

Valid test

Can an admin login to an
admin account by entering
a username and password
that exist in the
tblAdminDetails table?

Any valid admin
account. In this
case:
Username = ‘Toby’
Password =
‘password’

The GUI displays the
admin menu.

Video 1
12:17 to
12:42

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 9 of 64

28

Validation

Invalid
test

An invalid username and
password are entered and
then the ‘Login’ button is
pressed.

Username = ‘not
valid’
Password = ‘not a
password’

An error message will
appear on the GUI.

Video 1
12:55 to
13:10

As
predicted

29

Data security
/ Validation

Invalid
test

Enter an SQL symbol into
the username field on the
‘Admin Login’ panel to
check that the
parametrised statement in
preventing against SQL
injections.

Username = ‘'’
Password = ‘'’

An error appears on the
GUI saying account
does not exist.

Video 1
13:13 to
13:22

As
predicted

30

Navigation

Valid test Testing the ‘BACK’ button
on the ‘Admin Login’ panel

Pressing the ‘BACK’
button

The ‘Tube Planner’
main menu panel is
displayed when the
‘BACK’ button is
pressed.

Video 1
2:10 to
2:14

As
predicted

31

Navigation

Valid test

Testing the ‘Log out’ button
on the ‘Admin Menu’

Pressing the ‘Log
out’ button

The ‘Admin Login’ panel
is displayed when the
‘Log out’ button is
pressed.

Video 1
12:41 to
12:44

As
predicted

32

Navigation

Valid test

Testing the ‘Edit Zone
pricing’ button on the
‘Admin Menu’

Pressing the ‘Edit
Zone pricing’ button

The ‘Edit Zone pricing’
panel is displayed when
the ‘Edit Zone pricing’
button is pressed.

Video 1
13:34 to
13:47

As
predicted

33

Navigation

Valid test

Testing the ‘Edit Lines’
button on the ‘Admin
Menu’

Pressing the ‘Edit
Lines’ button

The ‘Edit Lines’ panel is
displayed when the
‘Edit Lines’ button is
pressed.

Video 1
13:49 to
13:52

As
predicted

34

Navigation

Valid test

Testing the ‘New Admin
account’ button on the
‘Admin Menu’

Pressing the ‘New
Admin account’
button

The ‘New Admin
Account’ panel is
displayed when the

Video 1
13:53 to
13:56

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 10 of 64

‘New Admin account’
button is pressed.

35

Data storage

Valid
test

Enter the details for a new
admin account on the ‘New
Admin Account’ panel.
Then press ‘Create Account’

Username = ‘Felix’
Password =
‘securePass7’
Confirm Password =
‘securePass7’
Press the ‘Create
Account’ button

A message appears on
the GUI saying an
account was created.
This new account now
appears in the
tblAdminDetails table
in the database.

Video 1
14:08 to
14:45

As
predicted

36

Data storage
/ Validation

Invalid
test

When creating a new
admin account, enter a
username that already
exists. Then press ‘Create
Account’

Username = ‘Toby’
Password =
‘password123’
Confirm Password =
‘password123’

Press the ‘Create
Account’ button

An error message
appears on the GUI
saying that this
username has been
taken.

Video 1
15:57 to
16:21

As
predicted

37

Validation

Boundary
test –
invalid
test

When creating a new
admin account, enter a
username with 21
characters. Then press
‘Create Account’

Username =
‘123456789012345
678901’
Password =
‘password123’
Confirm Password =
‘password123’

Press the ‘Create
Account’ button

An error message
appears on the GUI
saying that the
username needs to be
<= 20 characters.

Video 1
16:25 to
16:42

As
predicted

38

Validation

Boundary
test –
valid test

When creating a new
admin account, enter a
username with 20

Username =
‘123456789012345
67890’

A message appears on
the GUI saying an
account was created.

Video 1
17:00 to
17:22

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 11 of 64

characters. Then press
‘Create Account’

Password =
‘password123’
Confirm Password =
‘password123’

Press the ‘Create
Account’ button

This new account now
appears in the
tblAdminDetails table
in the database.

39

Validation

Invalid
test

When creating a new
admin account, leave the
username field blank. Then
press ‘Create Account’

Username = null
Password =
‘password123’
Confirm Password =
‘password123’

Press the ‘Create
Account’ button

An error message
appears on the GUI
saying that a username
must be entered.

Video 1
17:25 to
17:48

As
predicted

40

Data security
/ Validation

Valid test Creating a new admin
account entering SQL
characters into the
username and password
fields. Then press ‘Create
Account’

Username = '’’
Password =
‘’testing(’
Confirm Password =
‘’testing(’
Press the ‘Create
Account’ button

A message appears on
the GUI saying an
account was created.

This new account now
appears in the
tblAdminDetails table
in the database.

Video 1
17:52 to
18:23

As
predicted

41

Validation

Boundary
test –
invalid
test

When creating a new
admin account, enter a
password and confirmation
password of 7 characters.
Then press ‘Create Account’

Username = ‘Jacob’
Password =
‘1234567’
Confirm Password =
‘1234567’
Press the ‘Create
Account’ button

An error message
appears on the GUI
saying that the
password needs to be
>= 8 characters.

Video 1
18:28 to
18:57

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 12 of 64

42

Validation

Boundary
test –
valid test

When creating a new
admin account, enter a
password and confirmation
password of 8 characters.
Then press ‘Create Account’

Username = ‘Jacob’
Password =
‘12345678’
Confirm Password =
‘12345678’
Press the ‘Create
Account’ button

A message appears on
the GUI saying an
account was created.

This new account now
appears in the
tblAdminDetails table
in the database.

Video 1
18:58 to
19:21

As
predicted

43

Validation

Boundary
test –
invalid
test

When creating a new
admin account, enter a
password and confirmation
password of 21 characters.
Then press ‘Create Account’

Username = ‘Dan’
Password =
‘123456789012345
678901’
Confirm Password =
‘123456789012345
678901’
Press the ‘Create
Account’ button

An error message
appears on the GUI
saying that the
password needs to be
<= 20 characters.

Video 1
19:25 to
19:53

As
predicted

44

Validation

Boundary
test –
valid test

When creating a new
admin account, enter a
username of 20 characters.
Then press ‘Create Account’

Username = ‘Dan’
Password =
‘123456789012345
67890’
Confirm Password =
‘123456789012345
67890’
Press the ‘Create
Account’ button

A message appears on
the GUI saying an
account was created.

This new account now
appears in the
tblAdminDetails table
in the database.

Video 1
19:54 to
20:23

As
predicted

45

Validation

Invalid
test

When creating a new
admin account, enter
different values for the
password and confirmation

Username = ‘Dave’
Password =
‘davesPassword’
Confirm Password =
‘davesPassword72’

An error message
appears on the GUI
saying that the
password and

Video 1
20:27 to
20:54

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 13 of 64

password. Then press
‘Create Account’

Press the ‘Create
Account’ button

confirmation password
must be the same.

46

Algorithm
output /
Data security

Valid test Create a new admin

account. Check this

account’s password when it

is hashed in the database.

Compare this hash with a

hash generated with a SHA-

256 generator online.

Username = ‘Felix’
Password =
‘securePass7’
Confirm Password =
‘securePass7’
Enter ‘securePass7’
into hash generator
online.

The hash generated

online from the string

‘securePass7’ is the

same as the hash that

appears in my database

for the account with

username ‘Felix’

Video 1
14:08 to
15:48

As
predicted

47

Algorithm
output / Data
storage

Valid test Create a new admin
account. Then check this
account’s adminID in the
database

Create a new
account with any
valid details, then
view this account in
the database.

The adminID should be
automatically set to the
maximum existing
adminID +1.

Video 1
14:32 to
14:59

As
predicted

48

Navigation

Valid test Testing the ‘BACK’ button
on the ‘New Admin
Account’ panel

Pressing the ‘BACK’
button

The ‘Admin menu’
panel is displayed when
the ‘BACK’ button is
pressed.

Video 1
20:57 to
21:00

As
predicted

49

Data storage

Valid test Test to see if all zone
pricing data from the
database if shown correctly
in table on the ‘Edit Zone
pricing’ panel.

Navigate to the ‘Edit
Zone pricing’ panel

The prices displayed on
the GUI should show
the same data from the
database.

Video 1
21:01 to
22:05

As
predicted

50

Data storage

Valid test Enter new prices into the
zone pricing table. Then
press Apply Changes. Check
the database table
‘tblZonePricing’ before and
after these changes.

Zone1, Zone1 = ‘1’
Zone1, Zone2 = ‘£5’
Zone1, Zone3 =
‘20.3’
Zone1, Zone4 = ‘0.1’
Zone1, Zone5 =
‘3.02’

The database is
updated with the new
prices when the ‘Apply
Changes’ button is
pressed.

Video 1
21:14 to
23:05

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 14 of 64

51

Algorithm
output /
Validation

Valid test Enter valid prices into the
fields in the table on the
‘Edit Zone pricing’ panel.

Zone1, Zone1 = ‘1’
Zone1, Zone2 = ‘£5’
Zone1, Zone3 =
‘20.3’
Zone1, Zone4 = ‘0.1’
Zone1, Zone5 =
‘3.02’

A message appears on
the GUI saying the
database was updated.

Video 1
22:11 to
22:47

As
predicted

52

Algorithm
output /
Validation

Invalid
test

Test the price regular
expression by entering
invalid data into a price
field on the ‘Edit Zone
pricing’ panel.

New price = ‘text’ An error message
appears on the GUI
saying an invalid price
has been entered.

Video 1
23:15 to
23:25

As
predicted

53

Algorithm
output /
Validation

Invalid
test

Test the price regular
expression by entering
invalid data into a price
field on the ‘Edit Zone
pricing’ panel.

New price = ‘0.701’ An error message
appears on the GUI
saying an invalid price
has been entered.

Video 1
23:30 to
23:40

As
predicted

54

Algorithm
output /
Validation

Invalid
test

Test the price regular
expression by entering
invalid data into a price
field on the ‘Edit Zone
pricing’ panel.

New price =
‘1.70.81’

An error message
appears on the GUI
saying an invalid price
has been entered.

Video 1
23:41 to
23:54

As
predicted

55
Navigation

Valid test Testing the ‘BACK’ button
on the ‘Edit Zone pricing’
panel

Pressing the ‘BACK’
button

The ‘Admin menu’
panel is displayed when
the ‘BACK’ button is
pressed.

Video 1
23:58 to
24:02

As
predicted

56

Data storage

Valid test

Change line statuses using
the drop-down lists
displayed on the ‘Edit Lines’
panel. Then press ‘Apply
Changes’. Check the

Bakerloo Line status
= closed
Central Line status =
closed

Each station should
have a drop-down list
showing options for
‘open’ or ‘closed’.
When the ‘Apply

Video 1
24:06 to
25:43

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 15 of 64

database before and after
these changes.

District Line status =
closed
DRL Line status =
closed

Second commit:
Bakerloo Line status
= open
Central Line status =
open
District Line status =
open
DRL Line status =
open

Changes’ button is
pressed changes to
these statuses should
be updated in the
database.

57

Navigation

Valid test Testing the ‘BACK’ button
on the ‘Edit Lines’ panel

Pressing the ‘BACK’
button

The ‘Admin menu’
panel is displayed when
the ‘BACK’ button is
pressed.

Video 1
25:43 to
25:46

As
predicted

58

Algorithm
output

Valid test Test to see that a URL
request can be sent to the
TfL API and parsed to JSON.

The ‘Live Train
Changes’ checkbox
is selected. Find a
route. Then view
the console.

The URL is printed in
the console along with
the JSON response
returned from the API.

Video 1
26:00 to
27:38

As
predicted

59

Algorithm
output

Valid test When the program begins

stations should be sorted

using a merge sort into

alphabetical order based on

their UNICODE values.

Printing out the array of

stations in the console

Run the program

The array of stations
should be printed in the
console before and
after sorting. After
sorting, the array
should be sorted.

Video 3
00:00 to
01:55

As
predicted

NB: most
stations are
already
sorted as
the list

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 16 of 64

should be used to check the

sort has worked.

proved is
sorted but
not using
UNICODE
values. I talk
more about
this in the
‘Sorted
Stations’
section
below.

60

Algorithm
output / Data
storage

Valid test Test to see if station and
connection information
from my CSV files can be
transferred into my
database.

Run the program

When the program is
run the CSV files are
read, and the data is
transferred into the
database tables. After
running, the database
contains records for
both connections and
stations.

Video 2 The data is
copied from
the CSV files
into the
database as
predicted.

However,
the station’s
naptanIDs,
which are
fetched
from the
API for each
station,
could not
be found for
6 of the
stations.
These will

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 17 of 64

need to be
entered
manually.

Also, it must
be noted
that the
transfer of
data took a
long time as
I am limited
by the
number of
requests I
can make to
the API.

61

Algorithm
output / Data
storage

Valid test The icon image of the
application is set when the
program is run.

Run the program

Image file is called
‘UndergroundIcon.p
ng’

The icon image is set
when the program is
run, using an image in
the files of the project.

Video 1
00:00 to
00:29

As
predicted

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 18 of 64

Solving problems with my program
Although everything went as expected in my testing section, this was only because I had tested throughout development and fixed
any problems I came across. Below I have written about some of my issues and how I fixed them during development.

Graph problem
By far the biggest issue I came across when creating my project was with the graph and my path finding solution. Although I got
Dijkstra’s algorithm working perfectly with a simple graph and then with the London Underground graph, I soon realised that there
was a major problem involving line changes.

Using stations as nodes in my graph, and connections between stations as the edges of my graph did not work as the algorithm had
no way of pre-emptively knowing which line to travel on when there were parallel lines and therefore this graph would sometimes
lead to unnecessary line changes. A route between A and B below has this problem as Dijkstra’s algorithm would first travel on the
red line and then change to the green, as it has no way of knowing at A that it must travel on the green line to finish the journey and
is not aware that changing lines takes time.

The solution I came to was to create a new and improved graph where line changes were added as edges to the graph, while I
replaced each station node with multiple nodes to represent each connection to a different line at that station. I would now create
this improved graph of ‘GraphNode’ and ‘GraphEdge’ objects every time the program is run using the original station and connection
information in the database. I create these graph objects when the program is run so that I am still storing all the station and
connection information in my database, which is a lot easier to view and understand. This means that it would then be a lot easier to
add new stations and connections in the future if I wanted to implement this feature.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 19 of 64

The solution is shown below when it is applied to the graph above. As you can see each station node is replaced by a group of nodes,
connected by grey edges representing line changes. The weight of these changes can be edited where the weight is the time it takes
to change trains.

This makes my graph look a lot more complex even though the path finding algorithm works in the exact same way. An example of
one station with six lines going through it, connected to four different stations is draw below. As you can see each group of nodes in
the improved graph represents one station, with the grey edges representing line changes.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 20 of 64

 Before: After:

Sorted Stations
I was using binary search on the stations from the dataset, however, sometimes there would be issues with stations not being found
when they should be even through the station names appeared to be sorted in alphabetical order. The problem was that the I was
comparing strings in my binary search using their Unicode value, but the station were not sorted according to Unicode but instead
something else.
To solve this, I applied a merge sort on my stations based on the Unicode values of their names. This now meant that the binary
search always worked as intended.

Adjacency List
I realised that creating my adjacency list every time the path finding ran was adding unnecessary time to the path finding, as I had
imbedded for loops looping though all the nodes and edges of the graph. This was a simple fix where I now create the adjacency list
when the program is run and then store it a 2D array while the program is running so that it isn't created every time a route needs to
be found. This and a few other changes took my path-finding time to < 30ms from around 50-100ms.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 21 of 64

Evaluation

Comparison of Project Performance against objectives

Objective How I met this objective How well I met this objective

1 The user can input a
starting station and
destination station.

I met this objective as on the ‘Tube
Planner’ main menu panel there are
two text boxes for the ‘From’ and
‘To’ station names to be entered, for
a route to be found between them.

Evidence of this in test 1.

I think that I met this objective well as not only can
users enter a start station and destination station,
these text boxes also have autocomplete to make it
even easier for users to input the information.

The only alternative of doing text boxes would be using
the console as the interface and having the user type in
their station names there. I think this would have been
less user friendly, less visually pleasing, and I would
have likely not been able to implement autocomplete.

2 There is autocomplete
when the user types in the
station names.

I met this objective as when a user
starts typing in a station name into
either the ‘From’ or ‘To’ text boxes,
there is a suggestion filled out by the
system. The user can then press Tab
to complete this name or continue
typing in a different name.

Evidence of this in test 7.

I think this objective is met well as the autocomplete
works, is intuitive to use, and speeds up the time to
type a station name which was the main reason for this
feature.

However, this autocomplete could be improved if I
were to make an updated verson of this feature for
future programs. Firstly, I could have a drop-down list
that suggests multiple station names rather than just
suggesting the first one that matches what the user
types in. Secondly, I could also suggest station names
that have a similar spelling to what the user has typed
in so that the user will still get the suggestion they need
if they make a spelling error or typo.

3 A binary search is used to
search an array of station

I met this objective as I use this
algorithm when I need to find the
station names entered by the user.

I think that I met this objective well as my
implementation works as a binary search should, with a

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 22 of 64

names for a station name
entered by the user.

The code for this binary search is in
the ‘binarySearchForNode’ method in
the ‘RouteFinder’ class.

Evidence of this in test 25.

Big-O notation of O(log n), returning true or false
depending on whether the station name is found.

The binary search algorithm is also the best search
algorithm I could have implemented as it is much faster
than linear search for searching long arrays.

4 The user can choose
whether they would like the
quickest route or the route
with minimum train
changes, via a checkbox.

I met this objective as there is a
checkbox labelled ‘Minimum
Changes’ which allows users to
choose whether they would like the
quickest route or the route with
minimum train changes.

Evidence of this in tests 9 and 10.

I think that I met this objective well as there is a
checkbox letting the user choose whether they would
like the quickest route or the route with minimum train
changes. Selecting this checkbox changes how my path
finding algorithm works so the correct route can be
found given the state of this checkbox.

This was a very simple objective so after implementing
the checkbox there is nothing I could improve or do
differently.

5 The user can choose
whether they would like to
receive live train times, via
a checkbox.

I met this objective as there is a
checkbox labelled ‘Live Train Times’
which allows users to choose
whether they would like to view live
train arrival times.

Evidence of this in tests 11 and 12.

I think that I met this objective well as there is a
checkbox doing the function specified.

This was a very simple objective so after implementing
the checkbox there is nothing I could improve or do
differently.

6 An error is displayed if an
invalid station is entered.

I met this objective by displaying an
error message if a station name
entered by the user cannot be found
in the array of station names.

Evidence of this in tests 2 and 3.

I think that this objective is met well as a clear error
message is displayed on the GUI specifying that
‘Stations do not exist’.

Although this error message meets the requirements I
have set in my objective, I could have been more
specific in saying which of the two station name fields

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 23 of 64

is invalid. I could have also had a different error
message for when the fields are left completely blank.

7 An error is displayed if the
journey is not possible as a
line is closed.

I met this objective by displaying an
error message if the journey is not
possible as a line is closed.

Evidence of this in test 5.

I think that this objective is met well as a clear error
message is displayed on the GUI specifying that a
‘Route cannot be found due to closed lines’.

Although this error message meets the requirements I
have set in my objective, I could have been more
specific in saying which line is closed and preventing
the journey.

To improve on just an error message I could also
suggest alternative modes of transport and information
about when the line may reopen, however this would
be a large feature and would not be quick and easy to
implement.

8 An error is displayed if the
start and end station
entered are the same
station.

I met this objective by displaying an
error message if the start and end
station entered by the user are the
same.

Evidence of this in test 4.

I think that this objective is met well as the error
message is displaced on the GUI saying, ‘Stations
entered are the same’, which highlights the exact
problem causing the user’s input to be invalid.

I have considered two alternative ways of displaying
the error message however I think that neither of these
are as good as displaying the error on the GUI next to
where the information is typed in. The first is printing
the message in the console, however this is less clear
and cannot be viewed if my program is compiled into
an external application. The second is having the error
pop-up on a small GUI that requires the user to press
‘OK’. I don’t like this method as it unnecessarily

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 24 of 64

requires the user to press an extra button, and the pop-
up can seem annoying.

9 Dijkstra’s algorithm is used
to find the shortest travel
time between stations and
the route of that journey.

I have met this objective by
programming it in my class called
‘DijkstrasAlgorithm’. Testing the
program shows that the journey with
the shortest travel time between
stations is always found.

Evidence of this in tests 15, 16 and
18.

I think that I have met this objective well as my
implementation of Dijkstra’s algorithm works as
intended and I have used some effective programming
techniques such as a priority queue and recursion.

A faster alternative to Dijkstra’s algorithm I could have
used instead is A* pathfinding, however I have
explained in my design section why I was unable to use
this algorithm. If I was able to get round some of these
problems, such as getting the real-world distance
information between stations, this algorithm may be an
improvement to my path finding and decrease the time
for a journey to be found.

10 Dijkstra’s algorithm uses a
priority queue to hold
indexes of nodes Objects,
ordered by their time to be
reached.

I have met this objective by including
an ArrayList called
‘queueOfGraphNodeIndexes’ which
acts as my priority queue of nodes
sorted by their time to be reached
from the start node.

Evidence of this in test 23.

I think that I have met this objective well as I believe I
have programmed the queue efficiently. I have used a
binary search to find the position in the queue where a
new node should be inserted, instead of using a linear
search. I do not check to see if an index is already in the
queue when it is added, instead I just add the new
index so the queue may have multiple of the same
index. These duplicates are removed when they get to
the front of the queue eliminating the need for a linear
search. This implementation is fast, making adding an
item to the queue as quick as O(log n), while popping
an item from the queue is O(1).

There are other possible methods to using an ArrayList
that I could have used to implement my priority queue
such as a Binary Heap or linked list. However, both

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 25 of 64

methods are used to overcome using a fixed size array
which was not a problem for me as I was using an
ArrayList. A linked list is very inefficient, and a Binary
Heap has a complexity of O(log n) for popping and
O(log n) for adding new values, so the method I have
used is the most efficient.

11 My implementation of
Dijkstra’s algorithm should
use recursion.

I have met this objective as my
‘recursiveAlgorithum’ method in
Dijkstra’s algorithm calls itself.

Evidence of this in screenshot 1.

I think that I have implemented recursion well, making
my code easier to read than if I had used iteration.

I think that recursion was a better solution than
iteration for Dijkstra’s algorithm as I need to run the
algorithm until the end node has been found, or no
route can be found, rather than setting a condition
before looping through the algorithm.

However, it would be possible to program Dijkstra’s
algorithm using iteration, so in hindsight I should have
programmed both methods to see if iteration could
make a worthwhile impact on the execution speed of
the route finder. This is something I could try in the
future to improve my program.

12 An adjacency list is used to
store indexes of all edge
objects connected to each
node object.

I have met this objective by creating
a 2D array as my adjacency list, with
the index of each row representing
the index of a node in the node
ArrayList, and the list of indexes in
each row representing indexes of
edges in the edge ArrayList that are
connected to the corresponding node
object.

I think that my adjacency list is programmed well, as I
have initialised the list when the program begins,
rather than at the start of every path find, to improve
path finding speeds as mentioned above in the section
called ‘Adjacency List’.

The traditional way to store a graph would be to use an
adjacency list storing all nodes connected to each node
or to use an adjacency matrix. Instead, I used my own
adaptation of an adjacency list where I store all edges

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 26 of 64

Evidence of this in test 24.

connected to each node. This allows me to store more
information about each edge using the edge object,
such as the train line information object as well as the
travel time for that edge.

I did not use an adjacency matrix as there are very few
edges compared to nodes so most cells in the matrix
would be empty, wasting memory space. Storing my
data in an adjacency matrix would mean a 2D array
with 170,569 fields. My adjacency list has 2,891 fields. I
only need to use 1,136 of these fields. As you can see
here an adjacency list is a much better solution than an
adjacency matrix, and the 1,755 unused fields in my
adjacency list is acceptable when memory is not a huge
problem as it comes with the convenience of an easy to
use and understand adjacency list structure. However,
if I wanted to make my program even more optimised
and memory efficient, I should definitely look at how I
could improve my current adjacency list.

13 My pathfinding algorithm
redirects routes if a line’s
status is set to ‘Closed’.

I have met this objective by altering

my path finding algorithm so that it

does not used edges that are sections

of closed lines. This means my

program finds an alternative route,

redirecting the user onto other lines.

Evidence of this in test 6.

I have met this objective well as my program redirects
routes when a line is closed. I also think that this
objective is met well as I display a useful error message
to the user if a journey becomes impossible due to the
closed lines. I have commented on possible
improvements to this error message when analysing
objective 7, however I don’t think there are any
possible improvements I could make for this objective.

14 If the ‘Minimum Changes’
checkbox has been
selected, my pathfinding
algorithm redirects routes if

I have completed this objective by
weighting the algorithm more in
favour of staying on the same line if
the minimum changes checkbox is

I have executed this objective well as my path-find
solution successfully adapts to the user's choice of
selecting the ‘Minimum Changes’ checkbox to get a
route with less train changes where possible.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 27 of 64

there is an alternative route
with less train changes,
even if the journey time is
made longer.

selected. This means that a route will
still be found, but if this is possible
with less line changes that is the
route the algorithm will take, even if
it means the total journey time is
longer.

Evidence of this in tests 9 and 10.

I don’t think there are any improvements I can make
for this objective.

15 Objects are used to store
the nodes and edges of the
graph representing the tube
map. With nodes
representing stations and
edges representing train
lines.

I have completed this objective by
creating 'Station’ objects to represent
stations and ‘StationConnection’
objects to represent train lines
between stations. ‘GraphNode’
objects represent the nodes of the
graph and ‘GraphEdges’ represent
the edges of the graph. GraphNodes
associate with StationNodes and are
needed as one station is represented
by multiple nodes in the graph. The
GraphEdges are the connections
between these GraphNodes. This is
explained in ‘Graph Problem’ section
above.

Evidence of this in screenshot 2.

Although I have used objects for the nodes and edges
of my graph, they do not directly represent stations
and train lines as I expected they would in my
objective. However, I think that I have met this
objective in a slightly different and better way. I talk in
detail about how I represented the graph, and why, in
the ‘Graph Problem’ section above.

One thing that I could have done differently is to use

inheritance instead of association between the

‘GraphNode’ and ‘StationNode’ objects. However, I did

not use this as the ‘GraphNode’ objects use the data in

the ‘StationNode’ objects but do not clearly share a

child-parent relationship with them. I decided to use

association as I think it makes my objects’ relationships

clearer and easier to understand in this context, and

because I am using association everywhere else in my

program.

16 The system returns the cost
of the journey.

I have reached this objective by
storing the different prices in my
‘tblZonePricing’ table in my database,
which can be updated by admins via
the admin panels. The appropriate

I have met this objective well as the cost of the journey
is returned as required, based on the zones of that
route, and selected from the database of prices
entered by the admins.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 28 of 64

cost is then displayed with the other
journey results depending on the
zones that are travelled through on
the journey.

Evidence of this in test 17.

To improve on this feature, I could add more tables in
my database for prices, allowing me to store alternative
costs for children, families, and other special case
tickets.

17 The system returns the total
estimated travel time for
the journey.

I have met this objective by
displaying the total time calculated
by my pathfinding solution, from
adding all the times of the edges on
the shortest path.

Evidence of this in test 18.

I have completed this objective well as the total
estimated travel time for each route is displayed on the
journey results panel.

I don’t think there are any improvements I can make
for this objective as this was a simple objective that
was either met, or not.

18 The system returns the
estimated travel time for
each section between train
changes in the journey.

I have achieved this objective by
displaying the time for each section
between train changes.

Evidence of this in test 19.

I have executed this objective well by displaying the
estimated travel time for each section, as required by
my objective. It is useful for the user to know how long
each section of the route between line changes will be,
so that they are ready to get off at their stop.

There are not any improvements I can make for this
objective.

19 The system returns the
names of stations where
each line change occurs.

I have reached this objective by
displaying the names of stations
where each line change occurs on the
GUI.

Evidence of this in test 20.

I have met this objective well by showing the names of
the stations as required. This is useful information to
the user as it tells them what stations to change at.

There are not any improvements to be made for this
objective.

20 The system shows the
names and colours of the
lines being travelled on in
the journey.

I have achieved this objective by
storing the hex colour values of each
line record, along with the line name,
in the database. I then show the

I have met this objective well as having the colour
displayed as well as the line name makes it clearer for
the user to identify and see the different lines when
they are displayed with the journey results.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 29 of 64

colour of each line next to the name
of the lines that appear on the route.

Evidence of this in test 21.

There are not any improvements I can make for this
objective.

21 Using the TfL API, the
system returns the live
arrival times of the next
three trains for each stage
of the user's journey.

I have met this objective by calling
the TfL API and parsing the response
to JSON. I then display the arrival
times on the GUI panel.

Evidence of this in tests 12, 13 and
58.

I have met this objective quite well with three arrival
times being display most of the time, but there are a
few circumstances when getting three arrival times is
not possible:

• At night the lines are closed so there are no
train arrivals

• Due to Covid-19 some lines were often closed
meaning no live times

• Some sections of lines are just not busy enough
for three trains to be arriving in the near future,
and therefore less than three times are
returned by the API

• I was unable to get live train times for the DLR
and East London lines as these two lines have
no vehicleIDs. This means that I can get the
arrival times for trains at the stations but
cannot check if they are going in the right
direction. Even though this is a problem with
TfL’s API, I think that I may be able to find a
solution as they say that all information that
they display on their website can be obtained
from the API. Therefore, I will add this to my
improvements section and try to find a solution.

From this I have realised that always getting three

arrival times was an unrealistic objective as there will

always be times where trains are not running.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 30 of 64

22 Using the TfL API, the
system returns the
platforms that the user’s
trains leave from.

I have met this objective by calling
the TfL API and parsing the response
to JSON. I then display the platform
names on the GUI panel.

Evidence of this in tests 12 and 58.

I have met this objective well, displaying platform
names most of the time. However, for the same
situation as mentioned above for objective 21, there is
no train information returned and therefore no station
name can be displayed.

I also think this objective is met well because I display
an error message on the GUI to let the user know when
platform information cannot be found, instead of just
leaving the panel blank when the user expects to see
live information.

23 An error message is
displayed to the user if the
API can’t be accessed.

I have met this objective by
displaying a message on the GUI
panel whenever no station
information is available. This may be
for when there are no trains
currently running or when the user
has no internet connection, as shown
in test 14.

Evidence of this in test 14.

I have met this objective well as the error message is
displayed, preventing the program from failing, and
letting the user know when no live information can be
displayed, rather than just leaving the panel blank.

24 If the ‘Live Train Changes’
Checkbox was not selected,
the API is not called, and
the live train times and
platform information are
not displayed.

I have completed this objective by
not calling the API when the
checkbox is not selected. This means
the user doesn’t need to view live
information if they don’t want to,
speeding up the time for a route to
be returned.

Evidence of this in test 11.

I have executed this objective well because whenever
the ‘Live Train Changes’ checkbox is deselected the API
is not called, and no live information is displayed.

There are not any improvements I can make for this
objective.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 31 of 64

25 The route details are
returned in less than
200ms, when the API is not
accessed for live train
times.

I have met this objective by finding a
route using an efficient path finding
algorithm, priority queue, and binary
search. I have also reduced
calculation time by creating the
adjacency list when the program is
run rather than every time there is a
path find.

Evidence of this in test 22.

I have met this objective very well with routes being
returned in 15-30ms.

To improve on this, I could try to decrease the time to
access the API for live train information. However, this
may not be possible as it is linked to the user's internet
speed.

26 An Admin can login to the
admin menu if they enter a
valid username and
password.

I have achieved this objective by
checking if the username and
password entered on the login panel
exists in the database. If the account
exists, the admin is sent to the admin
menu.

Evidence of this in test 27.

I have met this objective well as the account validation
works as planned, letting users in if they have an
account and denying incorrect information with a
message on the GUI.

27 An error is displayed if the
username and/or password
entered is invalid.

I have met this objective by
displaying a message: ‘Account does
not exist’, when an invalid username
or password is entered on the admin
login panel.

Evidence of this in test 28.

I have met this objective well because an error is
displayed as required by my objective – when the
username and/or password entered is invalid.

There are not any improvements I can make for this
objective.

28 The username and
password entered are
checked against the records
in the database, using a
parameterised prepared
SQL statement.

I have met this objective by creating
a prepared statement and inserting
the username and hashed password
as the parameters.

I have met this objective well as I have used a
parameterised prepared statement as required. I used
this method, instead of using a stored procedure, to
protect my database against SQL injection attacks.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 32 of 64

Evidence of this in test 29 and
screenshot 3.

29 Admins are displayed a
menu from which they have
three different options: edit
zone pricing, edit lines, and
create new admin accounts.

I have met this objective by adding
these functions to the admin menu,
with the buttons leading to their
respective panels.

Evidence of this in tests 32, 33 and
34.

I have completed this objective well as the options
appear as buttons on the admin panel, allowing admins
to edit zone pricing, edit lines, and create new admin
accounts.

The only improvement I can make to this objective is
adding new functions for the admins. This may include
adding new stations and lines, and the ability to close
stations.

30 Admins can create new
admin accounts for fellow
admins.

I have met this objective. The admins
can go to the ‘New Admin Account’
panel and create a new admin
account. If a valid username and
password are entered the password
is then hashed, and the username
and hashed password are stored as a
new record in the ‘tblAdminDetails’
table.

Evidence of this in test 35.

This objective is met well as admin accounts can be
created and added to the database. When doing this
the password is hashed using a secure SHA-256 hash,
and an adminID is assigned to the new account using a
SQL ‘MAX’ operation.

I cannot think of any improvements I can make to this. I
have set it up so only admins can create accounts for
other admins, to prevent any user from creating an
account.

31 A username entered for a
new admin account must be
unique.

I have met this objective by checking
if the entered username already
exists in the database, before
allowing an account to be created
using the username.

Evidence of this in test 36.

I have met this objective well as my program validates
that a username is unique and returns an error if it
already exists for an account in the database.

There are not any improvements I can make for this
objective.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 33 of 64

32 The username must be <=
20 characters.

I have reached this objective by
making sure the username is <= 20
characters before allowing an
account to be created.

Evidence of this in tests 37 and 38.

I have met this objective well as my program validates
that the username is <= 20 characters for the account
to be created, otherwise it returns an error message.

There are not any improvements I can make for this
objective.

33 The username must not be
blank.

I have completed this objective by
making sure the username field is not
empty before allowing an account to
be created.

Evidence of this in test 39.

I have met this objective well as my program validates
that the username is not blank and returns an error if it
is.

There are not any improvements I can make for this
objective.

34 The password must be
between 8 and 20
characters (inclusive).

I have reached this objective by
making sure the password is <= 20
and >= 8 characters before allowing
an account to be created.

Evidence of this in tests 41, 42, 43
and 44.

I have met this objective well as my program validates
that a password is between 8 and 20 characters and
returns an error if the password is too long or too
short.

I have set the restraints of the password to this length
so that it is long enough to be secure, while not being
unnecessarily long. I cannot make any improvements
for this objective.

35 Password and Confirming
Password must be the same
when creating a new admin
account.

I met this objective by comparing the
password to the confirming password
to validate they are the same before
an account can be created using this
password.

Evidence of this in test 45.

I have met this objective well as my program validates
that the password and confirming password are the
same and returns an error if they are not.

There are not any improvements I can make for this
objective.

36 If any of the conditions for
the username and password

I have completed this objective by
displaying a range of different error
messages depending on the

I think that I have met this objective very well as I
display different error messages depending on the
condition that has been broken, to let the admin know

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 34 of 64

are not met, an error
message is displayed.

condition violated that makes the
account entered by the admin
invalid.

Evidence of this in tests 36, 37, 39,
41, 43 and 45.

specifically what they need to change for their new
account to be valid.

I don’t think that there are any improvements I can
make for this objective.

37 The new admin account is
inserted into the database
using a parameterised
prepared SQL statement.

I have met this objective by using a
parameterised prepared SQL
statement when adding new admin
accounts to the database.

Evidence of this in test 40 and
screenshot 4.

I think that I have met this objective well as I have used
a parameterised prepared SQL statement.

I think that using a parameterised statement is a lot
better than using a standard stored procedure. This is
because a parametrised statement will protect against
SQL injection attacks, while also making my code easier
to read and understand.

38 Admins passwords are
hashed using a SHA-256
hash.

I have successfully completed this
objective by applying a SHA-256 hash
to passwords before they are stored
in the ‘tblAdminDetails’ table.

Evidence of this is test 46 and
screenshot 5.

I have met this objective well, using a SHA-256 hash as
required and then storing the hashed passwords in my
database to protect my user’s data.

I think that this objective has been met well as SHA-256
is a secure hash that cannot be reverse engineered and
is much better than using an outdated hashing
algorithm such as MD5 which is more susceptible to
brute force attacks due to it being fast and memory-
conserving.

A newer hash such as SHA-512 could be used instead
but not provide any huge gain and would just require
longer hashes to be stored.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 35 of 64

The best way to improve security would be to use a
salt, along with SHA-256, to protect my stored
passwords against rainbow table attacks.

39 Use the aggregate SQL
‘MAX’ function when
assigning a unique ID to a
new admin account.

I have completed this objective by
using the SQL ‘MAX’ function to get
the current greatest admin account
ID. I then add one for the new
adminID.

Evidence of this is test 47 and
screenshot 6.

I think that I have met this objective well by using the
‘MAX’ function in my SQL statement as required. I have
decided to use this function as it means I do not need
to loop through all the admin records. The admin
names also don’t need to be sorted by their adminID,
which the alternative ‘TOP’ function requires.

40 Admins can update the
pricing for the different
Underground zones by
editing fields in an
interactable table.

I have achieved this objective by
having an interactable table on the
‘Edit Zone pricing’ panel, allowing
admins to update the costs of
journeys through different zones.

Evidence of this in test 50.

I have met this objective well as the table lets admins
update the pricing for the different Underground
zones, as required by my objective.

An extra feature I could add would be the ability for
admins to update all prices at once using a multiplier.
This would be useful as they could increase all prices by
the same percentage without having to change each
field individually.

41 A cross-table SQL statement
is used to fetch all zone
pricing information from
the database.

I have completed this objective by
using a cross-table SLQ statement to
get zone pricing information from the
‘tblZonePricing’ and ‘tblZone’ tables
in the database.

Evidence of this in test 49 and
screenshot 7.

I have met this objective well as my SQL statement for
getting zone price information uses a cross-table query,
as required by my objective.

I think that the objective is met well as using a
cross-table query means that I don’t need to connect to
the database twice and send two different requests,
instead all the information I need is returned at once.
This makes my program more efficient and makes my
code easier to understand.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 36 of 64

42 Admins are only able to
enter prices with a valid
price format, checked by a
regular expression.

I have met this objective by adding a
validation check to the prices entered
by the admins, using a regular
expression.

Evidence of this in tests 51, 52, 53
and 54 and screenshot 8.

I have completed this objective as my regular
expression successfully validates strings to check they
are in the correct format. I think I have met this
objective well as a regular expression is a better
method than coding validation checks for the price
input. I have also included a useful error message to let
admins know when an invalid price has been entered.

To improve my program, I could try to shorten my
regular expression. I have already done this but
shortening it further may be possible. I could also make
the error message more specific by saying exactly
which of the prices, entered by the admin into the
table, is in the wrong format.

43 Admins have an ‘Apply
Changes’ button to commit
their changes to the local
database.

I have completed this objective by
adding an ‘Apply Changes’ button for
admins to commit their new prices to
the local database.

Evidence of this in test 50.

I have met this objective well as having this button
means that the database only needs to be accessed
once when the admin has finished editing all the price
fields, rather than each time the admin makes a single
change.

There are no improvements to be made for this
objective.

44 Admins can set each line’s
status to open or closed
using drop down lists.

I have met this objective by having a
drop-down list for each line, allowing
the line statuses to be changed.

Evidence of this in test 56.

I have met this objective well, because having drop
down lists is an easy way for admins to select from a
few select options of statuses.

There are no improvements to be made for this
objective.

45 The changes to line statuses
are updated in the local
database when the admin

I have completed this objective by
adding an ‘Apply Changes’ button for

I have met this objective well as having this button
means that the database only needs to be accessed

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 37 of 64

presses the ‘Apply Changes’
button.

admins to commit their status
changes to the local database.

Evidence of this in test 56.

once when the admin is finished editing the statuses,
rather than each time an admin makes a single change.

There are no improvements to be made for this
objective.

46 Send a URL request to the
TfL API, and parse to JSON.

I have met this objective by calling
the TfL API with a URL request, and
then parsing the result to a JSON
array.

Evidence of this in test 58 and
screenshot 9.

I have met this objective well as my subroutine returns
a JSON array from a URL parameter. I have done this by
sending the URL as a request to the TfL open REST API,
and then parsing the response to JSON format.

For this objective I have used JSON rather than XML
because JSON is a lot easier to read and debug and has
arrays which makes it easier to get specific data from
each API response. As for the API, there is no other
option for getting train information than from the TfL
API, because it is their train network.

47 Use a normalised database
for all the details of the
system.

I have met this objective by using
primary and foreign keys to link
multiple tables to build up a database
in third normal form.

Evidence of this in screenshot 10.

I think that I have met this objective very well as I have
used third normal form to eliminate data redundancy. I
have used third normal form so that my tables have no
non-key dependencies, making my database clearer to
use and understand.

Preventing duplicate data is also very important as it
makes updating the database easier and means that
memory is not wasted.

48 Merge sort stations in
alphabetical order based on
their UNICODE values,
when the program begins.

I have met this objective by coding a
merge sort in my ‘MergeSortStations’
class.

Evidence of this in test 59.

I have met this objective well as I have coded an
efficient merge sort using recursion, sorting the station
names into alphabetical order based on their UNICODE
values. I am using this sort over insertion sort or
quicksort as merge sort has a worst-case time
complexity of O(n*log n) whereas insertion sort and

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 38 of 64

quicksort both have a complexity of O(n²). Insertion
sort and quicksort only run faster for short arrays, and
my array of stations is not short.

I do not think I could have coded my merge sort to be
any more efficient. I think recursion is the best way to
code a merge sort as the algorithm is naturally
recursive.

49 My merge sort should use
recursion.

I have met this objective by using
recursion in my merge sort in the
‘MergeSortStations’ class.

Evidence of this in screenshot 11.

I have met this objective well by using recursion when
the ‘mergeSort’ method calls itself in the
‘MergeSortStations’ class. I think that I have met the
objective well because recursion is the best way to
code a merge sort as the algorithm is naturally
recursive. Recursion also makes my algorithm easier to
read and understand for anyone who needs to read
and understand my code.

50 I will read from CSV files in
order to enter all station
and connection information
into my database from
these CSV datasets.

I have successfully met this objective
by reading the datasets from the CSV
files and parsing the result to a CSV
format. I have then stored this
station and connection information
in my database tables.

Evidence of this in test 60.

I think that this objective has been met well as the data
from the CSV files is successfully transferred to my
database.

Transferring the data into the database takes a while,
as shown in test 60, but this is because the TfL API
needs to be accessed multiple times and is not to do
with the speed of accessing and processing the CSV
files. Nevertheless, it should be noted that there is not
a great need for this process to be fast and optimised
as it will only be run once when the database is first
created, so the efficiency of the algorithm will never
affect the user.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 39 of 64

I have used CSV files as this is the format provided with
the datasets on GitHub.

51 I will read an image file to
set it as the icon image of
my application.

I have successfully met this objective
by getting the 'UndergroundIcon’
PNG stored in the files of my program
and setting this as the icon of my
application whenever it is run.

Evidence of this in test 61.

I think that I have met this objective well as the icon of
my application is set making my program look cleaner,
with more polish, an unequivocal upgrade to the
default Java logo.

I have used a PNG image format as JPEG images cannot
have a transparent background. A transparent
background is very important for the icon so it can
display on the taskbar without a background behind it.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 40 of 64

Screenshot evidence for objectives

Screenshot
1 Method from ‘DijkstrasAlgorithm’ class.

2

Variables for ‘Station’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 41 of 64

Variables for ‘StationConnection’ class.

Variables for ‘GraphNode’ class.

Variables for ‘GraphEdge’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 42 of 64

3 Method from ‘AccessDatabase’ class. Called from ‘doesAdminAccountExist’ method in ‘AdminMethods’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 43 of 64

4 Method from ‘AccessDatabase’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 44 of 64

5 Method from ‘AdminMethods’ class.

6 Method from ‘AccessDatabase’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 45 of 64

7 Method from ‘AccessDatabase’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 46 of 64

8 Method from ‘AdminMethods’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 47 of 64

9 Method from 'AccessAPI’ class.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 48 of 64

10 Below is the structure of my database showing all column names for each table. Red indicates a primary key; green indicates a foreign key,
and blue indicates a standard column for data.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 49 of 64

11 Contents on my ‘MergeSortStations’ class, showing recursion where ‘mergeSort’ calls itself.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 50 of 64

Analysis of User Feedback

I have asked users of my system some questions about what they thought of my program in a user feedback survey. Below are the

questions and some of the answers given in this survey. I have then commented on their feedback and the action I will now take.

__

All the above responses are from people who have seen all the feature they wanted added to the program, with two people

mentioning how they liked the minimum changes, live train times, and price of journey.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 51 of 64

Despite having live expected arrival times, which should mean that delays are accounted for, I agree with this feedback. It would be

useful for users to know if there are possible extra delays to their arriving trains, as well as possible delays on their route that may

increase their journey time. This could be implemented by giving admins the ability to enter what lines and trains have delays as

suggested by this user, with delays being shown to users with their journey results, or on a separate panel where users could go to

view all delays.

__

From the results above we can see that most users faced no bugs when running my program. This shows that my program has been

tested well and there are no obvious errors.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 52 of 64

This is not a problem under any normal circumstances.

__

This is great news as this was one of my objectives that I met very well. This user feedback shows that having a fast pathfinding

algorithm was noticed by users and it was worth the effort I put in to tuning it to be faster.

This user liked the autocomplete function. This is useful to know as the main purpose of adding this feature was to improve the

user’s experience by making it easier for them to type in station names. To further improve the user experience I could improve my

autocomplete as well as adding other possible features such as speech-to-text.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 53 of 64

The above feedback shows users that liked; the colour coded lines, how routes were redirected when there were line closures, and

the abilities of admins to change prices and open new accounts.

The use of colours was useful to these users but for further development I would have to think about how the colour blind and

visually impaired would view the system. I could start by asking people who are colour blind and with poor eyesight to test my

program.

The last of the three responses above points out how redirecting routes when there are line closures allows them to change their

schedule if there are delays caused by closed lines.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 54 of 64

This user liked how the cost and time of journeys were displayed which were some of my objectives and main functions of my

system.

This user liked to see the hash function being used to secure the passwords in my database. They also thought that entering all the

data into my database would have taken a long time, but due to me importing the datasets from CSV files the process was quick and

easy, and much better than entering it manually.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 55 of 64

__

The two responses above show these users did not like how my system could not tab between all fields. This is something that

NetBeans has done automatically, allowing users to tab between text fields but not onto buttons or checkboxes. However, this is a

change I could make myself and I think it would be useful as it would improve the quality of my system, making it more natural to

use as many other systems allow tabbing between all fields.

I agree with this feedback and think that the ability of adding new stations to the system would be useful as new stations are added

to lines on the Underground in real life. I would also like to combine this with being able to add new lines to the system as new lines

such as Crossrail are currently under construction.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 56 of 64

I like the idea of expanding to other modes of transport in London, allowing users to travel the fastest possible route even if this

means not on trains. In particular, I would like to add routes for buses as well as walking between stations as sometimes walking

between two stations is a lot faster than taking the Underground, and buses can access areas of London where the train lines do not

extend.

This user found the text on my GUI difficult to read. This is something I did not consider but I should make considerations for in the

future, especially for people with poor eyesight or using smaller displays. These considerations may include the ability to change the

size of the text and automatically adjusting the size of the font based on the user’s screen size.

One user has pointed out how the ‘Admin Access’ button can be seen by users, even though it cannot be used by them. This could

be avoided by redesigning my system to work with two programs running off the same database, one for users with no admin

access, and one for admins with full admin access to update the shared database. This would require a large redesign and would

benefit from having an online database that can be connected to by all users and admins, with the users and admins having access

to different software.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 57 of 64

When implementing error messages, I thought it would look good to have new error messages appear above previous messages,

with these previous messages being moved down on the GUI. However, this was clearly not the right decision by me as something as

simple as error messages should not be confusing to view. Therefore, in the future I will change this so a new error message

removes previous messages because the functionality and ease of use of the system should be the priority.

__

These responses show that some users saw nothing that could be improved.

This user is thinking ahead at whether I would need a faster route-finding algorithm for a larger graph, if I were to expand my

network. However, as I have talked about before, other implementations such as A* are not possible as I don’t have the datasets

required. I also do not think that a larger graph would be much of a problem for my current path finding solution, not that I plan to

expand my system anywhere outside of London.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 58 of 64

For my system I do not want to expand outside London as I want my system’s purpose to be for people needing to travel around

London, and not across the whole country. Expanding my project on that scale would also be a real challenge to code and to get all

the data needed.

A second user has mentioned not liking how I am displaying error messages. As said before, I would like to change this in order to

make error messages disappear when a new one appears.

I have analysed this user’s idea when they mentioned it for the first question. I have agreed that I would like to add a feature like this

so admins can enter whether there are delays for trains.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 59 of 64

This user has suggested a couple of improvements for my system. I would like to include something similar to their first suggestion,

such as having an option where the user can choose to open a new window displaying the tube map. I agree that this may be helpful

to some users even though I said I didn’t want this feature in my analysis section.

However, I think the second suggestion by this user of having user accounts would be a pointless addition to the system as I don’t

think that saving routes is needed as they are very quick to find by searching so nothing is gained. This would add unnecessary

complexity to the system, make it more complicated for the users, and would require me to store personal information when it is

avoidable.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 60 of 64

Changes and features I want to include based on this user feedback:

• Admins can enter whether there are delays for trains.

• Tab between all text fields and buttons. (currently only works
between text fields)

• The option of adding new stations and lines.

• Include other modes of transport.

• Adjusting text size to make it easier to read.

• Separate systems for users and admins that connect to the
same database.

• Deleting previous error messages when a new one appears,
rather than printing the new one above.

• An option to open and view the tube map.

Changes suggested by users that I will not include:

• Faster pathfinding algorithm.

• Routes outside of London.

• User accounts.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 61 of 64

Improvements/Extensions

This section mentions some improvements and extensions in detail that would make my system better. These are based on user

feedback and areas that I know could be improved.

1) Use a salt to improve password security.

Although my SHA-256 hashing algorithm is secure and cannot be reversed it is still susceptible to rainbow table attacks,
where the attacker uses a large dataset of hashed data to crack unsecure passwords such as commonly used passwords and
plain English words. To protect against these attacks, and make my admin passwords more secure, I can use a salt alongside
my hashing algorithm.

Adding a salt would not be difficult. It requires an extra column in the admin table of my database for the salt to be stored
and simple random generation for the salt to be added. This makes this extension very appealing as it will offer increased
security while it should take little time to implement.

2) Train times for DLR and East London Line.

I was unable to get live train times for the DLR and East London lines as these two lines have no vehicleIDs. This means that I
can get the arrival times for trains at the stations but cannot check if they are going in the right direction. Even though these
vehicleIDs are not displayed by TfL for these two lines, I think there is a solution as they say that all information displayed on
their website can be obtained from the API.

Therefore, to improve my system I want to find a way to obtain these DLR and East London line arrival times. I may need to
contact people at TfL about this as I have already looked but I have not found a reliable way to get live information for these
lines.

This improvement is very important as some users may travel on the DLR and East London lines and I can’t currently show
them any live train information.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 62 of 64

3) Mention Train changes when the same line forks.

When there is a split in a train line my program does not say that there is a train change involved, even though train changes
are sometimes required even if they are not line changes. For example: when going from North Harrow to West Harrow it
says to take the metropolitan from North Harrow to West Harrow and does not mention that you must change at Harrow-on-
the-Hill.

To improve my system, I must change my pathfinding to work with new information about what sections of the same line are
connected in what directions. This may require me to rethink how I set out my graph to represent the Tube map, but it is
achievable.

4) The option of adding new stations and lines. (based on user feedback)

A useful new feature for admins would be the ability for new stations and lines to be added. This extension would make my
system better as it could adapt to changes to the network such as the new line ‘Crossrail’ being constructed and possible new
line extensions. New stations are also added along new lines and to existing lines. It would also be useful to be able to
remove stations as sometimes they are closed when running them becomes unprofitable for TfL.

I would add these new features by adding more options to the admin menu that allow admins to make changes to the local
database. The station, line and connection tables will all be updated by admins.

I have coded my project in such a way that my route finding is dynamic with any size graph and so would require minimal
changes to implement this feature. This feature would be very useful while not taking too long to implement.

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 63 of 64

5) Ability to close stations and certain sections of track rather than whole lines.

Closing individual stations and sections of track would be more useful than whole lines as it is more likely that sections of
track fail (e.g. due to low temperatures or signal failure) than the whole line closing (e.g. for a tube strike). Stations can also
be closed when there are bags left unattended (posing a bomb threat) or there can be suicides on the platforms causing both
platform closures and line closures. Video evidence linked below shows documentaries recording moments where sections of
lines, platforms, and whole stations need to be closed.

I plan to implement this in a similar way to how I currently close whole lines. I will use statuses and then allow admins to
change the statuses of stations and line sections via drop-down lists. I will need to have some way of storing which section
each station is in on a line. This may link in to how I store lines in sections in order to meet improvement No.3 above.

Evidence:
https://youtu.be/1eO93NFMsgU?t=124
https://youtu.be/em-Rd6-axms?t=131
https://youtu.be/em-Rd6-axms?t=529

6) Include other modes of transport. (based on user feedback)

Some of my user feedback mentioned expanding the area covered by my system to include more rail networks on a larger
scale and to add new modes of transport such as buses. For my system I do not want to expand outside London as I want my
system to be for people needing to travel around London, and not across the whole country. Expanding my project on that
scale would be a real challenge, would take a lot of time to get all the data needed, and defeats the purpose of a system
which is to help people commute around London.

However, the idea of expanding to other modes of transport is more reasonable and would be a good addition to my route
finder as sometimes buses can be more direct and quicker than trains, and cover areas of London where there aren't
stations. I also like the idea of having walking as another mode of transport as some stations are physically very close but
require a long journey on the London Underground. Having this walking option would allow users to save money by not
taking the train, as well as saving them precious time.

To implement this feature I would have to start by finding adequate datasets and then adding more tables to my database
for modes of transport, as well as adding new records to many of my existing tables. This would be one of my more difficult
and time-consuming extensions, but it would be a useful addition to make a perfect route finder for London rather than just
the London Underground.

https://youtu.be/1eO93NFMsgU?t=124
https://youtu.be/em-Rd6-axms?t=131
https://youtu.be/em-Rd6-axms?t=529

Name: Toby Hooper Centre number: 64220 Candidate number: 8564

 64 of 64

7) Adjusting text size to make it easier to read. (based on user feedback)

After receiving user feedback saying that the text was hard to read, I would like to change my system to have dynamic font
sizes based on the size of the user’s screen, as well as having options to increase the font size manually. This should allow
people with poor eyesight or smaller displays to view my system with no problems.

To adjust the size of the text based on the user’s screen size, I will have to get the screen size and automatically change the
font settings when the program runs.

To allow the user to further manually edit the text size I will include an options menu where they can select their desired font
size which will change the size of text across the system. I may include a few options such as ‘small’, ‘medium’, ‘large’, and
‘very large’, like other systems do as this will allow me to make sure everything is formatted correctly for each level of font
sizes.

